Generalizing Non-Punctuality for Timed Temporal Logic with Freeze Quantifiers
Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent real-time extensions of Linear Temporal Logic (LTL). In general, the satisfiability checking problem for these extensions is undecidable when both the future U and the past S modalities are used. In a classical result, the satisfiability checking for MITL[U,S], a non punctual fragment of MTL[U,S], is shown to be decidable with EXPSPACE complete complexity. Given that this notion of non punctuality does not recover decidability in the case of TPTL[U,S], we propose a generalization of non punctuality called non adjacency for TPTL[U,S], and focus on its 1-variable fragment, 1-TPTL[U,S]. While non adjacent 1-TPTL[U,S] appears to be be a very small fragment, it is strictly more expressive than MITL. As our main result, we show that the satisfiability checking problem for non adjacent 1-TPTL[U,S] is decidable with EXPSPACE complete complexity.
READ FULL TEXT