Generating subgraphs in chordal graphs

11/11/2018
by   Vadim E. Levit, et al.
0

A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space, denoted WCW(G). Let B be a complete bipartite induced subgraph of G on vertex sets of bipartition B_X and B_Y. Then B is generating if there exists an independent set S such that S ∪ B_X and S ∪ B_Y are both maximal independent sets of G. In the restricted case that a generating subgraph B is isomorphic to K_1,1, the unique edge in B is called a relating edge. Generating subgraphs play an important role in finding WCW(G). Deciding whether an input graph G is well-covered is co-NP-complete. Hence, finding WCW(G) is co-NP-hard. Deciding whether an edge is relating is NP-complete. Therefore, deciding whether a subgraph is generating is NP-complete as well. A graph is chordal if every induced cycle is a triangle. It is known that finding WCW(G) can be done polynomially in the restricted case that G is chordal. Thus recognizing well-covered chordal graphs is a polynomial problem. We present a polynomial algorithm for recognizing relating edges and generating subgraphs in chordal graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro