Generative Adversarial Network for Wireless Signal Spoofing

05/03/2019
by   Yi Shi, et al.
0

The paper presents a novel approach of spoofing wireless signals by using a general adversarial network (GAN) to generate and transmit synthetic signals that cannot be reliably distinguished from intended signals. It is of paramount importance to authenticate wireless signals at the PHY layer before they proceed through the receiver chain. For that purpose, various waveform, channel, and radio hardware features that are inherent to original wireless signals need to be captured. In the meantime, adversaries become sophisticated with the cognitive radio capability to record, analyze, and manipulate signals before spoofing. Building upon deep learning techniques, this paper introduces a spoofing attack by an adversary pair of a transmitter and a receiver that assume the generator and discriminator roles in the GAN and play a minimax game to generate the best spoofing signals that aim to fool the best trained defense mechanism. The output of this approach is two-fold. From the attacker point of view, a deep learning-based spoofing mechanism is trained to potentially fool a defense mechanism such as RF fingerprinting. From the defender point of view, a deep learning-based defense mechanism is trained against potential spoofing attacks when an adversary pair of a transmitter and a receiver cooperates. The probability that the spoofing signal is misclassified as the intended signal is measured for random signal, replay, and GAN-based spoofing attacks. Results show that the GAN-based spoofing attack provides a major increase in the success probability of wireless signal spoofing even when a deep learning classifier is used as the defense.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset