Generative Autotransporters

06/08/2017
by   Jiqing Wu, et al.
0

In this paper, we aim to introduce the classic Optimal Transport theory to enhance deep generative probabilistic modeling. For this purpose, we design a Generative Autotransporter (GAT) model with explicit distribution optimal transport. Particularly, the GAT model owns a deep distribution transporter to transfer the target distribution to a specific prior probability distribution, which enables a regular decoder to generate target samples from the input data that follows the transported prior distribution. With such a design, the GAT model can be stably trained to generate novel data by merely using a very simple l_1 reconstruction loss function with a generalized manifold-based Adam training algorithm. The experiments on two standard benchmarks demonstrate its strong generation ability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset