Global Optimization with Parametric Function Approximation

11/16/2022
by   Chong Liu, et al.
0

We consider the problem of global optimization with noisy zeroth order oracles - a well-motivated problem useful for various applications ranging from hyper-parameter tuning for deep learning to new material design. Existing work relies on Gaussian processes or other non-parametric family, which suffers from the curse of dimensionality. In this paper, we propose a new algorithm GO-UCB that leverages a parametric family of functions (e.g., neural networks) instead. Under a realizable assumption and a few other mild geometric conditions, we show that GO-UCB achieves a cumulative regret of Õ(√(T)) where T is the time horizon. At the core of GO-UCB is a carefully designed uncertainty set over parameters based on gradients that allows optimistic exploration. Numerical simulation illustrates that GO-UCB works better than classical Bayesian optimization approaches in high dimensional cases, even if the model is misspecified.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset