Global stability of day-to-day dynamics for schedule-based Markovian transit assignment with boarding queues

04/05/2023
by   Takashi Akamatsu, et al.
0

Schedule-based transit assignment describes congestion in public transport services by modeling the interactions of passenger behavior in a time-space network built directly on a transit schedule. This study investigates the theoretical properties of scheduled-based Markovian transit assignment with boarding queues. When queues exist at a station, passenger boarding flows are loaded according to the residual vehicle capacity, which depends on the flows of passengers already on board with priority. An equilibrium problem is formulated under this nonseparable link cost structure as well as explicit capacity constraints. The network generalized extreme value (NGEV) model, a general class of additive random utility models with closed-form expression, is used to describe the path choice behavior of passengers. A set of formulations for the equilibrium problem is presented, including variational inequality and fixed-point problems, from which the day-to-day dynamics of passenger flows and costs are derived. It is shown that Lyapunov functions associated with the dynamics can be obtained and guarantee the desirable solution properties of existence, uniqueness, and global stability of the equilibria. In terms of dealing with stochastic equilibrium with explicit capacity constraints and non-separable link cost functions, the present theoretical analysis is a generalization of the existing day-to-day dynamics in the context of general traffic assignment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset