Graph Meta Learning via Local Subgraphs

06/14/2020
by   Kexin Huang, et al.
0

Prevailing methods for graphs require abundant label and edge information for learning. When data for a new task are scarce, meta-learning allows us to learn from prior experiences and form much-needed inductive biases for fast adaption to the new task. Here, we introduce G-Meta, a novel meta-learning approach for graphs. G-Meta uses local subgraphs to transfer subgraph-specific information and make the model learn the essential knowledge faster via meta gradients. G-Meta learns how to quickly adapt to a new task using only a handful of nodes or edges in the new task and does so by learning from data points in other graphs or related, albeit disjoint label sets. G-Meta is theoretically justified as we show that the evidence for a particular prediction can be found in the local subgraph surrounding the target node or edge. G-Meta is theoretically justified, which we show using the theory of enclosing subgraphs. Experiments on seven datasets and nine baseline methods show that G-Meta can considerably outperform existing methods by up to 16.3 methods, G-Meta can successfully learn in challenging, few-shot learning settings that require generalization to completely new graphs and never-before-seen labels. Finally, G-Meta scales to large graphs, which we demonstrate on our new Tree-of-Life dataset comprising of 1,840 graphs, a two-orders of magnitude increase in the number of graphs used in prior work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro