GraphFederator: Federated Visual Analysis for Multi-party Graphs

08/27/2020
by   Dongming Han, et al.
0

This paper presents GraphFederator, a novel approach to construct joint representations of multi-party graphs and supports privacy-preserving visual analysis of graphs. Inspired by the concept of federated learning, we reformulate the analysis of multi-party graphs into a decentralization process. The new federation framework consists of a shared module that is responsible for joint modeling and analysis, and a set of local modules that run on respective graph data. Specifically, we propose a federated graph representation model (FGRM) that is learned from encrypted characteristics of multi-party graphs in local modules. We also design multiple visualization views for joint visualization, exploration, and analysis of multi-party graphs. Experimental results with two datasets demonstrate the effectiveness of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro