GraVoS: Gradient based Voxel Selection for 3D Detection

08/18/2022
by   Oren Shrout, et al.
12

3D object detection within large 3D scenes is challenging not only due to the sparse and irregular 3D point clouds, but also due to the extreme foreground-background imbalance in the scene and class imbalance. A common approach is to add ground-truth objects from other scenes. Differently, we propose to modify the scenes by removing elements (voxels), rather than adding ones. Our approach selects the "meaningful" voxels, in a manner that addresses both types dataset imbalance. The approach is general and can be applied to any voxel-based detector, yet the meaningfulness of a voxel is network-dependent. Our voxel selection is shown to improve the performance of several prominent 3D detection methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset