Grounding Visual Explanations (Extended Abstract)

11/17/2017
by   Lisa Anne Hendricks, et al.
0

Existing models which generate textual explanations enforce task relevance through a discriminative term loss function, but such mechanisms only weakly constrain mentioned object parts to actually be present in the image. In this paper, a new model is proposed for generating explanations by utilizing localized grounding of constituent phrases in generated explanations to ensure image relevance. Specifically, we introduce a phrase-critic model to refine (re-score/re-rank) generated candidate explanations and employ a relative-attribute inspired ranking loss using "flipped" phrases as negative examples for training. At test time, our phrase-critic model takes an image and a candidate explanation as input and outputs a score indicating how well the candidate explanation is grounded in the image.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro