GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction with Relational Reasoning
Demystifying the interactions among multiple agents from their past trajectories is fundamental to precise and interpretable trajectory prediction. However, previous works only consider pair-wise interactions with limited relational reasoning. To promote more comprehensive interaction modeling for relational reasoning, we propose GroupNet, a multiscale hypergraph neural network, which is novel in terms of both interaction capturing and representation learning. From the aspect of interaction capturing, we propose a trainable multiscale hypergraph to capture both pair-wise and group-wise interactions at multiple group sizes. From the aspect of interaction representation learning, we propose a three-element format that can be learnt end-to-end and explicitly reason some relational factors including the interaction strength and category. We apply GroupNet into both CVAE-based prediction system and previous state-of-the-art prediction systems for predicting socially plausible trajectories with relational reasoning. To validate the ability of relational reasoning, we experiment with synthetic physics simulations to reflect the ability to capture group behaviors, reason interaction strength and interaction category. To validate the effectiveness of prediction, we conduct extensive experiments on three real-world trajectory prediction datasets, including NBA, SDD and ETH-UCY; and we show that with GroupNet, the CVAE-based prediction system outperforms state-of-the-art methods. We also show that adding GroupNet will further improve the performance of previous state-of-the-art prediction systems.
READ FULL TEXT