HandSeg: A Dataset for Hand Segmentation from Depth Images

11/16/2017
by   Sri Raghu Malireddi, et al.
0

We introduce a large-scale RGBD hand segmentation dataset, with detailed and automatically generated high-quality ground-truth annotations. Existing real-world datasets are limited in quantity due to the difficulty in manually annotating ground-truth labels. By leveraging a pair of brightly colored gloves and an RGBD camera, we propose an acquisition pipeline that eases the task of annotating very large datasets with minimal human intervention. We then quantify the importance of a large annotated dataset in this domain, and compare the performance of existing datasets in the training of deep-learning architectures. Finally, we propose a novel architecture employing strided convolution/deconvolutions in place of max-pooling and unpooling layers. Our variant outperforms baseline architectures while remaining computationally efficient at inference time. Source and datasets will be made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset