#HashtagWars: Learning a Sense of Humor

12/09/2016
by   Peter Potash, et al.
0

In this work, we present a new dataset for computational humor, specifically comparative humor ranking, which attempts to eschew the ubiquitous binary approach to humor detection. The dataset consists of tweets that are humorous responses to a given hashtag. We describe the motivation for this new dataset, as well as the collection process, which includes a description of our semi-automated system for data collection. We also present initial experiments for this dataset using both unsupervised and supervised approaches. Our best supervised system achieved 63.7 more difficult than comparable humor detection tasks. Initial experiments indicate that a character-level model is more suitable for this task than a token-level model, likely due to a large amount of puns that can be captured by a character-level model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset