Head-tail Loss: A simple function for Oriented Object Detection and Anchor-free models
This paper presents a new loss function for the prediction of oriented bounding boxes, named head-tail-loss. The loss function consists in minimizing the distance between the prediction and the annotation of two key points that are representing the annotation of the object. The first point is the center point and the second is the head of the object. However, for the second point, the minimum distance between the prediction and either the head or tail of the groundtruth is used. On this way, either prediction is valid (with the head pointing to the tail or the tail pointing to the head). At the end the importance is to detect the direction of the object but not its heading. The new loss function has been evaluated on the DOTA and HRSC2016 datasets and has shown potential for elongated objects such as ships and also for other types of objects with different shapes.
READ FULL TEXT