Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization

04/07/2015
by   Yanfeng Sun, et al.
0

Tensors or multiarray data are generalizations of matrices. Tensor clustering has become a very important research topic due to the intrinsically rich structures in real-world multiarray datasets. Subspace clustering based on vectorizing multiarray data has been extensively researched. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model. In contrast to existing techniques, we propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the so-called multinomial manifold, for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset