High-Accuracy Model-Based Reinforcement Learning, a Survey

07/17/2021
by   Aske Plaat, et al.
6

Deep reinforcement learning has shown remarkable success in the past few years. Highly complex sequential decision making problems from game playing and robotics have been solved with deep model-free methods. Unfortunately, the sample complexity of model-free methods is often high. To reduce the number of environment samples, model-based reinforcement learning creates an explicit model of the environment dynamics. Achieving high model accuracy is a challenge in high-dimensional problems. In recent years, a diverse landscape of model-based methods has been introduced to improve model accuracy, using methods such as uncertainty modeling, model-predictive control, latent models, and end-to-end learning and planning. Some of these methods succeed in achieving high accuracy at low sample complexity, most do so either in a robotics or in a games context. In this paper, we survey these methods; we explain in detail how they work and what their strengths and weaknesses are. We conclude with a research agenda for future work to make the methods more robust and more widely applicable to other applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset