High order approximation of Hodge Laplace problems with local coderivatives on cubical meshes

10/29/2019
by   Jeonghun J. Lee, et al.
0

In mixed finite element approximations of Hodge Laplace problems associated with the de Rham complex, the exterior derivative operators are computed exactly, so the spatial locality is preserved. However, the numerical approximations of the associated coderivatives are nonlocal and it can be regarded as an undesired effect of standard mixed methods. For numerical methods with local coderivatives a perturbation of low order mixed methods in the sense of variational crimes has been developed for simplicial and cubical meshes. In this paper we extend the low order method to all high orders on cubical meshes using a new family of finite element differential forms on cubical meshes. The key theoretical contribution is a generalization of the linear degree, in the construction of the serendipity family of differential forms, and the generalization is essential in the unisolvency proof of the new family of finite element differential forms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset