High-throughput, high-resolution Generated Adversarial Network Microscopy

01/07/2018
by   Hao Zhang, et al.
0

We for the first time combine generated adversarial network (GAN) with wide-field light microscopy to achieve deep learning super-resolution under a large field of view (FOV). By appropriately adopting prior microscopy data in an adversarial training, the network can recover a high-resolution, accurate image of new specimen from its single low-resolution measurement. This capacity has been adequately demonstrated by imaging various types of samples, such as USAF resolution target, human pathological slides and fluorescence-labelled fibroblast cells. Their gigapixel, multi-color reconstructions verify a successful GAN-based single image super-resolution procedure. Furthermore, this deep learning-based imaging approach doesn;t necessarily introduce any change to the setup of a conventional wide-filed microscope, reconstructing large FOV (about 95 mm^2), high-resolution (about 1.7 μm) image at a high speed (in 1 second). As a result, GAN-microscopy opens a new way to computationally overcome the general challenge of high-throughput, high-resolution microscopy that is originally coupled to the physical limitation of system's optics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro