How Robust Are Graph Neural Networks to Structural Noise?
Graph neural networks (GNNs) are an emerging model for learning graph embeddings and making predictions on graph structured data. However, robustness of graph neural networks is not yet well-understood. In this work, we focus on node structural identity predictions, where a representative GNN model is able to achieve near-perfect accuracy. We also show that the same GNN model is not robust to addition of structural noise, through a controlled dataset and set of experiments. Finally, we show that under the right conditions, graph-augmented training is capable of significantly improving robustness to structural noise.
READ FULL TEXT