Humans-as-a-sensor for buildings: Intensive longitudinal indoor comfort models
Evaluating and optimising human comfort within the built environment is challenging due to the large number of physiological, psychological and environmental variables that affect occupant comfort preference. Humans are often better than sensors at capturing all of these disparate phenomena and interpreting their impact; the challenge is collecting spatially and temporally diverse subjective feedback in a scalable way. This paper presents a methodology to collect intensive longitudinal subjective feedback of comfort-based preference using micro ecological momentary assessments on a smartwatch platform. An experiment with 30 occupants over two weeks produced 4,378 field-based surveys for thermal, noise, and acoustic preference. The occupants and the spaces in which they left feedback were then clustered according to these preference tendencies. These groups were used to create different feature sets with combinations of environmental and physiological variables, for use in a multi-class classification task. These classification models were trained on a feature set that was developed from time-series attributes, environmental and near-body sensors, heart rate, and the historical preferences of both the individual and the comfort group assigned. The most accurate model didn't use environmental sensor data and yet had multi-class classification F1 micro scores of 64 noise preference, respectively. The discussion outlines how these models provide comfort preference prediction as good or better than installed sensors, even in situations when some occupants are not willing or able to wear smartwatches. The approach presented prompts reflection on how the building analysis community evaluates, controls, and designs indoor environments.
READ FULL TEXT