Hybrid Message Passing Algorithm for Downlink FDD Massive MIMO-OFDM Channel Estimation

12/27/2022
by   Yi Song, et al.
0

The design of message passing algorithms on factor graphs has been proven to be an effective manner to implement channel estimation in wireless communication systems. In Bayesian approaches, a prior probability model that accurately matches the channel characteristics can effectively improve estimation performance. In this work, we study the channel estimation problem in a frequency division duplexing (FDD) downlink massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. As the prior probability, we propose the Markov chain two-state Gaussian mixture with large variance difference (TSGM-LVD) model to exploit the structured sparsity in the angle-frequency domain of the massive MIMO-OFDM channel. In addition, we present a new method to derive the hybrid message passing (HMP) rule, which can calculate the message with mixed linear and non-linear model. To the best of the authors' knowledge, we are the first to apply the HMP rule to practical communication systems, designing the HMP-TSGM-LVD algorithm under the structured turbo-compressed sensing (STCS) framework. Simulation results demonstrate that the proposed HMP-TSGM-LVD algorithm converges faster and outperforms its counterparts under a wide range of simulation settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset