HyperPose: Camera Pose Localization using Attention Hypernetworks
In this study, we propose the use of attention hypernetworks in camera pose localization. The dynamic nature of natural scenes, including changes in environment, perspective, and lighting, creates an inherent domain gap between the training and test sets that limits the accuracy of contemporary localization networks. To overcome this issue, we suggest a camera pose regressor that integrates a hypernetwork. During inference, the hypernetwork generates adaptive weights for the localization regression heads based on the input image, effectively reducing the domain gap. We also suggest the use of a Transformer-Encoder as the hypernetwork, instead of the common multilayer perceptron, to derive an attention hypernetwork. The proposed approach achieves superior results compared to state-of-the-art methods on contemporary datasets. To the best of our knowledge, this is the first instance of using hypernetworks in camera pose regression, as well as using Transformer-Encoders as hypernetworks. We make our code publicly available.
READ FULL TEXT