i-Algebra: Towards Interactive Interpretability of Deep Neural Networks

01/22/2021
by   Xinyang Zhang, et al.
25

Providing explanations for deep neural networks (DNNs) is essential for their use in domains wherein the interpretability of decisions is a critical prerequisite. Despite the plethora of work on interpreting DNNs, most existing solutions offer interpretability in an ad hoc, one-shot, and static manner, without accounting for the perception, understanding, or response of end-users, resulting in their poor usability in practice. In this paper, we argue that DNN interpretability should be implemented as the interactions between users and models. We present i-Algebra, a first-of-its-kind interactive framework for interpreting DNNs. At its core is a library of atomic, composable operators, which explain model behaviors at varying input granularity, during different inference stages, and from distinct interpretation perspectives. Leveraging a declarative query language, users are enabled to build various analysis tools (e.g., "drill-down", "comparative", "what-if" analysis) via flexibly composing such operators. We prototype i-Algebra and conduct user studies in a set of representative analysis tasks, including inspecting adversarial inputs, resolving model inconsistency, and cleansing contaminated data, all demonstrating its promising usability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset