ICQ: A Quantization Scheme for Best-Arm Identification Over Bit-Constrained Channels
We study the problem of best-arm identification in a distributed variant of the multi-armed bandit setting, with a central learner and multiple agents. Each agent is associated with an arm of the bandit, generating stochastic rewards following an unknown distribution. Further, each agent can communicate the observed rewards with the learner over a bit-constrained channel. We propose a novel quantization scheme called Inflating Confidence for Quantization (ICQ) that can be applied to existing confidence-bound based learning algorithms such as Successive Elimination. We analyze the performance of ICQ applied to Successive Elimination and show that the overall algorithm, named ICQ-SE, has the order-optimal sample complexity as that of the (unquantized) SE algorithm. Moreover, it requires only an exponentially sparse frequency of communication between the learner and the agents, thus requiring considerably fewer bits than existing quantization schemes to successfully identify the best arm. We validate the performance improvement offered by ICQ with other quantization methods through numerical experiments.
READ FULL TEXT