Identifiability of interaction kernels in mean-field equations of interacting particles

06/10/2021
by   Quanjun Lang, et al.
0

We study the identifiability of the interaction kernels in mean-field equations for intreacting particle systems. The key is to identify function spaces on which a probabilistic loss functional has a unique minimizer. We prove that identifiability holds on any subspace of two reproducing kernel Hilbert spaces (RKHS), whose reproducing kernels are intrinsic to the system and are data-adaptive. Furthermore, identifiability holds on two ambient L2 spaces if and only if the integral operators associated with the reproducing kernels are strictly positive. Thus, the inverse problem is ill-posed in general. We also discuss the implications of identifiability in computational practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro