Identification of Energy Management Configuration Concepts from a Set of Pareto-optimal Solutions

06/14/2023
by   Felix Lanfermann, et al.
0

Optimizing building configurations for an efficient use of energy is increasingly receiving attention by current research and several methods have been developed to address this task. Selecting a suitable configuration based on multiple conflicting objectives, such as initial investment cost, recurring cost, robustness with respect to uncertainty of grid operation is, however, a difficult multi-criteria decision making problem. Concept identification can facilitate a decision maker by sorting configuration options into semantically meaningful groups (concepts), further introducing constraints to meet trade-off expectations for a selection of objectives. In this study, for a set of 20000 Pareto-optimal building energy management configurations, resulting from a many-objective evolutionary optimization, multiple concept identification iterations are conducted to provide a basis for making an informed investment decision. In a series of subsequent analysis steps, it is shown how the choice of description spaces, i.e., the partitioning of the features into sets for which consistent and non-overlapping concepts are required, impacts the type of information that can be extracted and that different setups of description spaces illuminate several different aspects of the configuration data - an important aspect that has not been addressed in previous work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro