Identifying emergency stages in Facebook posts of police departments with convolutional and recurrent neural networks and support vector machines

01/02/2018
by   Nicolai Pogrebnyakov, et al.
0

Classification of social media posts in emergency response is an important practical problem: accurate classification can help automate processing of such messages and help other responders and the public react to emergencies in a timely fashion. This research focused on classifying Facebook messages of US police departments. Randomly selected 5,000 messages were used to train classifiers that distinguished between four categories of messages: emergency preparedness, response and recovery, as well as general engagement messages. Features were represented with bag-of-words and word2vec, and models were constructed using support vector machines (SVMs) and convolutional (CNNs) and recurrent neural networks (RNNs). The best performing classifier was an RNN with a custom-trained word2vec model to represent features, which achieved the F1 measure of 0.839.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset