Image Set Classification for Low Resolution Surveillance

03/26/2018
by   Uzair Nadeem, et al.
0

This paper proposes a novel image set classification technique based on the concept of linear regression. Unlike most other approaches, the proposed technique does not involve any training or feature extraction. The gallery image sets are represented as subspaces in a high dimensional space. Class specific gallery subspaces are used to estimate regression models for each image of the test image set. Images of the test set are then projected on the gallery subspaces. Residuals, calculated using the Euclidean distance between the original and the projected test images, are used as the distance metric. Three different strategies are devised to decide on the final class of the test image set. We performed extensive evaluations of the proposed technique under the challenges of low resolution, noise and less gallery data for the tasks of surveillance, video based face recognition and object recognition. Experiments show that the proposed technique achieves a better classification accuracy and a faster execution time under the challenging testing conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset