Implicit copula variational inference
Key to effective generic, or "black-box", variational inference is the selection of an approximation to the target density that balances accuracy and calibration speed. Copula models are promising options, but calibration of the approximation can be slow for some choices. Smith et al. (2020) suggest using "implicit copula" models that are formed by element-wise transformation of the target parameters. We show here why these are a tractable and scalable choice, and propose adjustments to increase their accuracy. We also show how a sub-class of elliptical copulas have a generative representation that allows easy application of the re-parameterization trick and efficient first order optimization methods. We demonstrate the estimation methodology using two statistical models as examples. The first is a mixed effects logistic regression, and the second is a regularized correlation matrix. For the latter, standard Markov chain Monte Carlo estimation methods can be slow or difficult to implement, yet our proposed variational approach provides an effective and scalable estimator. We illustrate by estimating a regularized Gaussian copula model for income inequality in U.S. states between 1917 and 2018.
READ FULL TEXT