Improved Deterministic Algorithms for Non-monotone Submodular Maximization
Submodular maximization is one of the central topics in combinatorial optimization. It has found numerous applications in the real world. In the past decades, a series of algorithms have been proposed for this problem. However, most of the state-of-the-art algorithms are randomized. There remain non-negligible gaps with respect to approximation ratios between deterministic and randomized algorithms in submodular maximization. In this paper, we propose deterministic algorithms with improved approximation ratios for non-monotone submodular maximization. Specifically, for the matroid constraint, we provide a deterministic 0.283-o(1) approximation algorithm, while the previous best deterministic algorithm only achieves a 1/4 approximation ratio. For the knapsack constraint, we provide a deterministic 1/4 approximation algorithm, while the previous best deterministic algorithm only achieves a 1/6 approximation ratio.
READ FULL TEXT