Improved Quantum Boosting

09/17/2020
by   Adam Izdebski, et al.
0

Boosting is a general method to convert a weak learner (which generates hypotheses that are just slightly better than random) into a strong learner (which generates hypotheses that are much better than random). Recently, Arunachalam and Maity gave the first quantum improvement for boosting, by combining Freund and Schapire's AdaBoost algorithm with a quantum algorithm for approximate counting. Their booster is faster than classical boosting as a function of the VC-dimension of the weak learner's hypothesis class, but worse as a function of the quality of the weak learner. In this paper we give a substantially faster and simpler quantum boosting algorithm, based on Servedio's SmoothBoost algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro