Improved Search in Hamming Space using Deep Multi-Index Hashing
Similarity-preserving hashing is a widely-used method for nearest neighbour search in large-scale image retrieval tasks. There has been considerable research on generating efficient image representation via the deep-network-based hashing methods. However, the issue of efficient searching in the deep representation space remains largely unsolved. To this end, we propose a simple yet efficient deep-network-based multi-index hashing method for simultaneously learning the powerful image representation and the efficient searching. To achieve these two goals, we introduce the multi-index hashing (MIH) mechanism into the proposed deep architecture, which divides the binary codes into multiple substrings. Due to the non-uniformly distributed codes will result in inefficiency searching, we add the two balanced constraints at feature-level and instance-level, respectively. Extensive evaluations on several benchmark image retrieval datasets show that the learned balanced binary codes bring dramatic speedups and achieve comparable performance over the existing baselines.
READ FULL TEXT