Improving Low-resource Reading Comprehension via Cross-lingual Transposition Rethinking

07/11/2021
by   Gaochen Wu, et al.
0

Extractive Reading Comprehension (ERC) has made tremendous advances enabled by the availability of large-scale high-quality ERC training data. Despite of such rapid progress and widespread application, the datasets in languages other than high-resource languages such as English remain scarce. To address this issue, we propose a Cross-Lingual Transposition ReThinking (XLTT) model by modelling existing high-quality extractive reading comprehension datasets in a multilingual environment. To be specific, we present multilingual adaptive attention (MAA) to combine intra-attention and inter-attention to learn more general generalizable semantic and lexical knowledge from each pair of language families. Furthermore, to make full use of existing datasets, we adopt a new training framework to train our model by calculating task-level similarities between each existing dataset and target dataset. The experimental results show that our XLTT model surpasses six baselines on two multilingual ERC benchmarks, especially more effective for low-resource languages with 3.9 and 4.1 average improvement in F1 and EM, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro