Inference under Information Constraints III: Local Privacy Constraints

01/20/2021
by   Jayadev Acharya, et al.
0

We study goodness-of-fit and independence testing of discrete distributions in a setting where samples are distributed across multiple users. The users wish to preserve the privacy of their data while enabling a central server to perform the tests. Under the notion of local differential privacy, we propose simple, sample-optimal, and communication-efficient protocols for these two questions in the noninteractive setting, where in addition users may or may not share a common random seed. In particular, we show that the availability of shared (public) randomness greatly reduces the sample complexity. Underlying our public-coin protocols are privacy-preserving mappings which, when applied to the samples, minimally contract the distance between their respective probability distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset