Infinitely Divisible Noise in the Low Privacy Regime

10/13/2021
by   Rasmus Pagh, et al.
0

Federated learning, in which training data is distributed among users and never shared, has emerged as a popular approach to privacy-preserving machine learning. Cryptographic techniques such as secure aggregation are used to aggregate contributions, like a model update, from all users. A robust technique for making such aggregates differentially private is to exploit infinite divisibility of the Laplace distribution, namely, that a Laplace distribution can be expressed as a sum of i.i.d. noise shares from a Gamma distribution, one share added by each user. However, Laplace noise is known to have suboptimal error in the low privacy regime for ε-differential privacy, where ε > 1 is a large constant. In this paper we present the first infinitely divisible noise distribution for real-valued data that achieves ε-differential privacy and has expected error that decreases exponentially with ε.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro