Integrating Whole Context to Sequence-to-sequence Speech Recognition
Because an attention based sequence-to-sequence speech (Seq2Seq) recognition model decodes a token sequence in a left-to-right manner, it is non-trivial for the decoder to leverage the whole context of the target sequence. In this paper, we propose a self-attention mechanism based language model called casual cloze completer (COR), which models the left context and the right context simultaneously. Then, we utilize our previously proposed "Learn Spelling from Teachers" approach to integrate the whole context knowledge from COR to the Seq2Seq model. We conduct the experiments on public Chinese dataset AISHELL-1. The experimental results show that leveraging whole context can improve the performance of the Seq2Seq model.
READ FULL TEXT