Interpolating between symmetric and asymmetric hypothesis testing

04/19/2021
by   Robert Salzmann, et al.
0

The task of binary quantum hypothesis testing is to determine the state of a quantum system via measurements on it, given the side information that it is in one of two possible states, say ρ and σ. This task is generally studied in either the symmetric setting, in which the two possible errors incurred in the task (the so-called type I and type II errors) are treated on an equal footing, or the asymmetric setting in which one minimizes the type II error probability under the constraint that the corresponding type I error probability is below a given threshold. Here we define a one-parameter family of binary quantum hypothesis testing tasks, which we call s-hypothesis testing, and in which the relative significance of the two errors are weighted by a parameter s. In particular, s-hypothesis testing interpolates continuously between the regimes of symmetric and asymmetric hypothesis testing. Moreover, if arbitrarily many identical copies of the system are assumed to be available, then the minimal error probability of s-hypothesis testing is shown to decay exponentially in the number of copies, with a decay rate given by a quantum divergence which we denote as ξ_s(ρσ), and which satisfies a host of interesting properties. Moreover, this one-parameter family of divergences interpolates continuously between the corresponding decay rates for symmetric hypothesis testing (the quantum Chernoff divergence) for s = 1, and asymmetric hypothesis testing (the Umegaki relative entropy) for s = 0.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset