Interpretable CNNs

01/08/2019
by   Quanshi Zhang, et al.
42

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN), where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset