Interpretable discriminant analysis for functional data supported on random non-linear domains

12/05/2021
by   Eardi Lila, et al.
0

We introduce a novel framework for the classification of functional data supported on non-linear, and possibly random, manifold domains. The motivating application is the identification of subjects with Alzheimer's disease from their cortical surface geometry and associated cortical thickness map. The proposed model is based upon a reformulation of the classification problem into a regularized multivariate functional linear regression model. This allows us to adopt a direct approach to the estimation of the most discriminant direction while controlling for its complexity with appropriate differential regularization. Our approach does not require prior estimation of the covariance structure of the functional predictors, which is computationally not feasible in our application setting. We provide a theoretical analysis of the out-of-sample prediction error of the proposed model and explore the finite sample performance in a simulation setting. We apply the proposed method to a pooled dataset from the Alzheimer's Disease Neuroimaging Initiative and the Parkinson's Progression Markers Initiative, and are able to estimate discriminant directions that capture both cortical geometric and thickness predictive features of Alzheimer's Disease, which are consistent with the existing neuroscience literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset