Investigating self-supervised front ends for speech spoofing countermeasures

11/15/2021
by   Xin Wang, et al.
0

Self-supervised speech model is a rapid progressing research topic, and many pre-trained models have been released and used in various down stream tasks. For speech anti-spoofing, most countermeasures (CMs) use signal processing algorithms to extract acoustic features for classification. In this study, we use pre-trained self-supervised speech models as the front end of spoofing CMs. We investigated different back end architectures to be combined with the self-supervised front end, the effectiveness of fine-tuning the front end, and the performance of using different pre-trained self-supervised models. Our findings showed that, when a good pre-trained front end was fine-tuned with either a shallow or a deep neural network-based back end on the ASVspoof 2019 logical access (LA) training set, the resulting CM not only achieved a low EER score on the 2019 LA test set but also significantly outperformed the baseline on the ASVspoof 2015, 2021 LA, and 2021 deepfake test sets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset