IOTA-based Directed Acyclic Graphs without Orphans

12/13/2018
by   Pietro Ferraro, et al.
0

Directed Acylic Graphs (DAGs) are emerging as an attractive alternative to traditional blockchain architectures for distributed ledger technology (DLT). In particular DAG ledgers with stochastic attachment mechanisms potentially offer many advantages over blockchain, including scalability and faster transaction speeds. However, the random nature of the attachment mechanism coupled with the requirement of protection against double-spend transactions leaves open the possibility that not all transactions will be eventually validated. Such transactions are said to be orphaned, and will never be validated. Our principal contribution is to propose a simple modification to the attachment mechanism for the Tangle (the IOTA DAG architecture). This modification ensures that all transactions are validated in finite time, and preserves essential features of the popular Monte-Carlo selection algorithm. In order to demonstrate these results we derive a fluid approximation for the Tangle (in the limit of infinite arrival rate) and prove that this fluid model exhibits the desired behavior. We also present simulations which validate the results for finite arrival rates.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset