Isolation Mondrian Forest for Batch and Online Anomaly Detection

03/08/2020
by   Haoran Ma, et al.
0

We propose a new method, named isolation Mondrian forest (iMondrian forest), for batch and online anomaly detection. The proposed method is a novel hybrid of isolation forest and Mondrian forest which are existing methods for batch anomaly detection and online random forest, respectively. iMondrian forest takes the idea of isolation, using the depth of a node in a tree, and implements it in the Mondrian forest structure. The result is a new data structure which can accept streaming data in an online manner while being used for anomaly detection. Our experiments show that iMondrian forest mostly performs better than isolation forest in batch settings and has better or comparable performance against other batch and online anomaly detection methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset