It's a super deal – train recurrent network on noisy data and get smooth prediction free

06/09/2022
by   Boris Rubinstein, et al.
0

Recent research demonstrate that prediction of time series by predictive recurrent neural networks based on the noisy input generates a smooth anticipated trajectory. We examine influence of the noise component in both the training data sets and the input sequences on network prediction quality. We propose and discuss an explanation of the observed noise compression in the predictive process. We also discuss importance of this property of recurrent networks in the neuroscience context for the evolution of living organisms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro