Iterative Orthogonal Feature Projection for Diagnosing Bias in Black-Box Models

11/15/2016
by   Julius Adebayo, et al.
0

Predictive models are increasingly deployed for the purpose of determining access to services such as credit, insurance, and employment. Despite potential gains in productivity and efficiency, several potential problems have yet to be addressed, particularly the potential for unintentional discrimination. We present an iterative procedure, based on orthogonal projection of input attributes, for enabling interpretability of black-box predictive models. Through our iterative procedure, one can quantify the relative dependence of a black-box model on its input attributes.The relative significance of the inputs to a predictive model can then be used to assess the fairness (or discriminatory extent) of such a model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset