Joint AP Probing and Scheduling: A Contextual Bandit Approach

08/06/2021
by   Tianyi Xu, et al.
0

We consider a set of APs with unknown data rates that cooperatively serve a mobile client. The data rate of each link is i.i.d. sampled from a distribution that is unknown a priori. In contrast to traditional link scheduling problems under uncertainty, we assume that in each time step, the device can probe a subset of links before deciding which one to use. We model this problem as a contextual bandit problem with probing (CBwP) and present an efficient algorithm. We further establish the regret of our algorithm for links with Bernoulli data rates. Our CBwP model is a novel extension of the classic contextual bandit model and can potentially be applied to a large class of sequential decision-making problems that involve joint probing and play under uncertainty.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro