Joint Generative and Contrastive Learning for Unsupervised Person Re-identification

12/16/2020
by   Hao Chen, et al.
0

Annotating identity labels in large-scale datasets is a labour-intensive work, which strongly limits the scalability of person re-identification (ReID) in the real world. Unsupervised ReID addresses this issue by learning representations directly from unlabeled images. Recent self-supervised contrastive learning provides an effective approach for unsupervised representation learning. In this paper, we incorporate a Generative Adversarial Network (GAN) and contrastive learning into one joint training framework. While the GAN provides online data augmentation for contrastive learning, the contrastive module learns view-invariant features for generation. In this context, we propose a mesh-based novel view generator. Specifically, mesh projections serve as references towards generating novel views of a person. In addition, we propose a view-invariant loss to facilitate contrastive learning between original and generated views. Deviating from previous GAN-based unsupervised ReID methods involving domain adaptation, we do not rely on a labeled source dataset, which makes our method more flexible. Extensive experimental results show that our method significantly outperforms state-of-the-art methods under both, fully unsupervised and unsupervised domain adaptive settings on several large scale ReID datsets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset