Joint RNN-Based Greedy Parsing and Word Composition

12/22/2014
by   Joël Legrand, et al.
0

This paper introduces a greedy parser based on neural networks, which leverages a new compositional sub-tree representation. The greedy parser and the compositional procedure are jointly trained, and tightly depends on each-other. The composition procedure outputs a vector representation which summarizes syntactically (parsing tags) and semantically (words) sub-trees. Composition and tagging is achieved over continuous (word or tag) representations, and recurrent neural networks. We reach F1 performance on par with well-known existing parsers, while having the advantage of speed, thanks to the greedy nature of the parser. We provide a fully functional implementation of the method described in this paper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro