KD-Club: An Efficient Exact Algorithm with New Coloring-based Upper Bound for the Maximum k-Defective Clique Problem

08/14/2023
by   Jiongzhi Zheng, et al.
0

The Maximum k-Defective Clique Problem (MDCP) aims to find a maximum k-defective clique in a given graph, where a k-defective clique is a relaxation clique missing at most k edges. MDCP is NP-hard and finds many real-world applications in analyzing dense but not necessarily complete subgraphs. Exact algorithms for MDCP mainly follow the Branch-and-bound (BnB) framework, whose performance heavily depends on the quality of the upper bound on the cardinality of a maximum k-defective clique. The state-of-the-art BnB MDCP algorithms calculate the upper bound quickly but conservatively as they ignore many possible missing edges. In this paper, we propose a novel CoLoring-based Upper Bound (CLUB) that uses graph coloring techniques ingeniously to detect independent sets so as to detect missing edges ignored by the previous methods. We then develop a new BnB algorithm for MDCP, called KD-Club, using CLUB in both the preprocessing stage for graph reduction and the BnB searching process for branch pruning. Extensive experiments show that KD-Club significantly outperforms state-of-the-art BnB MDCP algorithms on the number of solved instances within the cut-off time, having much smaller search tree and shorter solving time on various benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset