Knowledge Base Completion for Long-Tail Entities

06/30/2023
by   Lihu Chen, et al.
0

Despite their impressive scale, knowledge bases (KBs), such as Wikidata, still contain significant gaps. Language models (LMs) have been proposed as a source for filling these gaps. However, prior works have focused on prominent entities with rich coverage by LMs, neglecting the crucial case of long-tail entities. In this paper, we present a novel method for LM-based-KB completion that is specifically geared for facts about long-tail entities. The method leverages two different LMs in two stages: for candidate retrieval and for candidate verification and disambiguation. To evaluate our method and various baselines, we introduce a novel dataset, called MALT, rooted in Wikidata. Our method outperforms all baselines in F1, with major gains especially in recall.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset