Knowledge Distillation from Few Samples

12/05/2018
by   Tianhong Li, et al.
0

Current knowledge distillation methods require full training data to distill knowledge from a large "teacher" network to a compact "student" network by matching certain statistics between "teacher" and "student" such as softmax outputs and feature responses. This is not only time-consuming but also inconsistent with human cognition in which children can learn knowledge from adults with few examples. This paper proposes a novel and simple method for knowledge distillation from few samples. Taking the assumption that both "teacher" and "student" have the same feature map sizes at each corresponding block, we add a 1x1 conv-layer at the end of each block in the student-net, and align the block-level outputs between "teacher" and "student" by estimating the parameters of the added layer with limited samples. We prove that the added layer can be absorbed/merged into the previous conv-layer to formulate a new conv-layer with the same size of parameters and computation cost as the previous one. Experiments verify that the proposed method is very efficient and effective to distill knowledge from teacher-net to student-net constructing in different ways on various datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset